
2 Geometric interpretation of complex numbers

2.1 Definition

I will start finally with a precise definition, assuming that such mathematical object as vector space
R2 is well familiar to the students. Recall that any element of R2 is a (column) vector[

x
y

]
,

where x, y are just real numbers.

Definition 2.1. The set of complex numbers, usually denoted as C (another standard notation is
C, but I will stick to the former), is, by definition, the vector space R2, i.e., the set of pairs of real
numbers, with operations of addition and multiplication defined as follows for any z1, z2 ∈ C:

z1 + z2 =

[
x1
y1

]
+

[
x2
y2

]
=

[
x1 + x2
y1 + y2

]
,

z1 · z2 = z1z2 =

[
x1
y1

]
+

[
x2
y2

]
=

[
x1x2 − y1y2
x1y2 + y1x2

]
.

The motivation to define the multiplication exactly as it is written above comes from “naive”
manipulations with numbers containing square root of −1 to find the roots of a cubic polynomial,
recall the previous lecture.

Recall that the standard basis of R2 is e1 = [1 0]⊤, e2 = [0 1]⊤, which literally means that any
vector from R2 (and hence from C) can be represented in a unique way as a linear combination

z =

[
x
y

]
= xe1 + ye2.

Now note that using the multiplication defined above for any z I have e1z = ze1 = z, so with a
slight abuse of notation I will denote e1 as 1 emphasizing that it is my unit. Moreover,

e2 · e2 = e22 =

[
0
1

]
·
[
0
1

]
=

[
−1
0

]
= −

[
1
0

]
= −e1 = −1,

therefore, if I introduce the notation i = e2, then the last line reads (familiar, isn’t it?)

i2 = −1,

and hence the usual expression
z = x+ iy

can (and should) be understood as a representation of z ∈ C with respect to the standard basis {1, i}.
No “imaginary” quantities anymore! Anyway, using symbol i saves so much space and time (instead
of writing vectors) and makes the computations so much easier that we will always use this notation,
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but a student should always remember that behind it there are always a couple of our very familiar
vectors that form the standard basis of R2.

The important thing is that introduced in the way how it is written above operations make the
set C into a field (see the textbook or any other source if this term is unfamiliar). I will leave all
the (rigorous and boring) details to the textbook, see Section 1.1, and only will show how to divide
complex numbers (subtraction should be absolutely obvious). For this for a complex z = x + iy I
introduce its conjugate z̄ = x− iy and note that

zz̄ = (x+ iy)(x− iy) = x2 + y2

is a real number (which rigorously, again, should be understood as a vector in R2 with the second
coordinate zero, or even better as (x2 + y2)e1).

Now if I want to divide two complex numbers z1 = x1 + iy1, z2 = x2 + iy2 I do the following:

z1
z2

=
z1z̄2
z2z̄2

=
1

x22 + y22
z1z̄2 =

x1x2 + y1y2
x22 + y22

+ i
x2y1 − x1y2
x22 + y22

= a+ ib ,

which is defined if and only if x22 + y22 ̸= 0, i.e., if and only if z2 ̸= 0 (i.e., it is not a zero vector).
Since I have a division it means that for any nonzero z ̸= 0 I can find its inverse z−1, which is

defined as such a complex number as zz−1 = z−1z = 1. Indeed, to find an inverse means divide 1 by
z, which leads to

z−1 =
1

z
=

z

zz̄
=

x

x2 + y2
+ i

−y

x2 + y2
,

which also prove the uniqueness of the inverse.
Having defined the inverse, I can easily check now all the axioms of a field, in particular the associa-

tivity of addition and multiplication, the commutativity of addition and multiplication, distributivity,
etc, please check the textbook for exact details. What is important here is that since R is a field and
C is a field, all the algebraic formulas we got used to while manipulating expressions with real numbers
stays the same if real numbers replaced with complex ones. I.e.,

(z1 + z2)
3 = z31 + 3z21z2 + 3z1z

2
2 + z32

is true for any complex z1, z2.
Before finally turning to the geometric interpretation of complex numbers I would like to state as

an exercise the properties of conjugate numbers:

Problem 2.1. Show that for any z, w ∈ C

z ± w = z̄ ± w̄,

zw = z̄ w̄,( z

w

)
=

z̄

w̄
,

z̄ = z,

Re z =
z + z̄

2
,

Im z =
z − z̄

2
,

z ∈ R ⇐⇒ z = z̄.
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Here I introduced new notation Re z and Im z for the real and imaginary parts of the complex
number z = x + iy, which are defined as Re z = x, Im z = y respectively. Also, a careful student
should understand now that when I write something like z ∈ R for a complex z, I again abuse the
notation and mean that z = ae1, for a real constant a. But this abuse does not lead to any mistakes,
everyone does it, and so I will be doing the same thing (to be a little more formal: Strictly speaking
the set of real numbers is not a subset of complex numbers C, which are pairs of real numbers, but
the field R is isomorphic to a subfield of C, which is the set of all vectors with the second coordinate
zero; if the last sentence does not make much sense to you, do not worry, we won’t need it really).

Problem 2.2. Let
p(z) = anz

n + an−1z
n−1 + . . .+ a1z + a0,

be a polynomial of complex variable z. w ∈ C is by definition its root if p(w) = 0. Show that if all
the coefficients an, an−1, . . . , a1, a0 are real and if w is a root then p has another root w̄.

Problem 2.3. Show that for any real matrix A complex eigenvalues occur in complex conjugate pairs.

2.2 Basic geometry of complex numbers

Having at our disposal the fact that complex numbers are literally the vectors from R2 (or sometimes
it is more convenient to look at them as the points in the plane), we start with very basic terminology,
illustrating it with geometric pictures.

Figure 1: Complex plane.

For each complex number z = x + iy we have a vector [x y]⊤ and/or a point with (rectangular
or Cartesian) coordinates (x, y). The coordinate x is called the real part of z, and y is called the
imaginary part of y, the corresponding notations were introduced above. Note that geometrically
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conjugation is simply a reflection with respect to the x-axis, which is, for obvious reasons, is called the
real axis (the y-axis is called the imaginary axis for the same reasons). The whole plane R2 is called
the complex plane C. The complex numbers on the real axis are identified with usual real numbers,
and the numbers on the imaginary axis are called purely imaginary.

Since z ∈ C is geometrically a vector (see the figure), we can always calculate its length |z|, which
is given, by Pythagoras theorem,

|z| = |x+ iy| =
√

x2 + y2 ,

and all the square roots of real numbers in these notes should be understood as positive square roots
if not states otherwise. The length of the vector z is naturally called its modulus, or absolute value. I
hope that all the students remember that for our usual absolute value |x| of a real number x it is true
that |x+ y| ≤ |x|+ |y| (can you prove this inequality?). It turns out the same is true for any complex
z, w ∈ C:

|z + w| ≤ |z|+ |w|. (2.1)

It is not difficult to prove it algebraically, but much nicer just to see it geometrically. For this note that
addition of complex numbers is actually our usual addition of vectors (by a triangle or parallelogram
law, see Fig. 2), and hence inequality (2.1) compares the length of one side of a triangle with vertices
z, w, z + w with the sum of the lengthes of two other sides, and therefore becomes obvious.

Figure 2: Geometric interpretation of complex addition and subtraction.

Problem 2.4. Prove (2.1) algebraically.

Since z − w = z + (−w), and −w geometrically is the vector that is obtained reflecting w with
respect to the origin, then |z−w| is exactly the distance between the points z and w (see Fig. 2, right
and note that from now on I will use the one geometric interpretation of complex numbers, either
vectors or points, which is more convenient for a given situation, without explicitly mentioning it).
It is actually our usual Euclidian distance between two points and of course non-negative, symmetric
and satisfies the triangle inequality |z−w| ≤ |z−v|+ |w−v| for any complex z, v, w ∈ C (why the last
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inequality is true?). In more formal words complex plane C is a metric space with distance function
d(z, w) = |z − w| (even more importantly, it is a complete metric space, which should be proved by
those who discussed completeness in other classes).

One more important remark is to note that

|z|2 = x2 + y2 = zz̄,

which is often very helpful.
There is no straightforward geometric multiplication of complex numbers in (rectangular) coordi-

nates (x, y), but remember that we always can pass to polar coordinates (r, θ) (textbook uses letter
ϕ instead of θ, but there is small caveat here: Mathematicians prefer to use θ, physicists — ϕ, and it
is not a big deal while we stay on the plane, when we move, however, to the three dimensional world
and spherical coordinates, mathematicians call the third coordinate ϕ, physicists — θ and since they
are not symmetric, it leads to different formulas, so be careful).

Recall that the polar coordinates of a point A are given by the distance r of this point from the
origin and by the angle θ of the vector OA with the polar axis (if A coincides with the origin the
angle is undetermined). Here is one subtle thing: polar coordinates are not defined uniquely since,
e.g., angles θ and θ + 2πk, k ∈ Z are indistinguishable. I have, using the basic trigonometry, that for
the complex number z = x+ iy, its polar coordinates are

r = |z| =
√

x2 + y2,

and the corresponding angle, which is called the argument of the complex number z, satisfies

tan θ =
y

x
.

The argument is usually denoted Arg z. In other words |z| and Arg z are the polar coordinates
r, θ of the point with rectangular coordinates (x, y). There is only one argument that satisfies the
condition −π < θ ≤ π, and I will call this (unique) argument of z as principal argument, θ = arg z (I
note that in some textbooks the notation Arg and arg is used in the opposite way, in my notes the
first capital letter will mean that the result is multivalued).

Now using tan θ = y/x I would like to determine arg z. Since arctan maps any real number to the
interval (−π/2, π/2) I must have (make a figure if you are confused here)

arg z =



arctan y
x , x > 0,

arctan y
x + π, x < 0, y ≥ 0,

arctan y
x − π, x < 0, y < 0,

π
2 , x = 0, y > 0,

−π
2 , x = 0, y < 0,

indeterminate, x = y = 0.

We of course have (see Fig. 1) arg z = − arg z̄ (is it true for any z?).
To go back from polar coordinates to rectangular, one of course uses

x = r cos θ, y = r sin θ,
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and hence
z = x+ iy = r(cos θ + i sin θ) = |z|(cosArg z + i sinArg z).

The last equality is the polar form of a complex number z.
Finally I am ready to see the geometric meaning of complex multiplication. Let z1, z2 be two

complex numbers
z1 = r1(cos θ1 + i sin θ1), z2 = r2(cos θ2 + i sin θ2).

I have

z1z2 = r1r2
(
(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + sin θ2 cos θ1)

)
= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)),

in other words
|z1z2| = |z1||z2|, Arg z1z2 = Arg z1 +Arg z2,

where the last equality means that the set of all possible values Arg z1z2 is obtained by forming all
possible sums from the sets Arg z1 and Arg z2. Ones again in words: to multiply two complex numbers
means geometrically to obtain the vector with the modulus with is the product of two moduli, and
with the argument which is the sum of the corresponding arguments (make a figure for, say, z = 1
and w = i).

Since

z−1 =
z̄

|z|2
=⇒ w

z
= wz−1,

and the modulus of |z−1| = 1/|z| and argument Arg z−1 = −Arg z, where the last equality understood
modulo 2π, then ∣∣∣∣z1z2

∣∣∣∣ = |z1|
|z2|

, Arg
z1
z2

= Arg z1 −Arg z2 .

2.3 Powers and roots

Since for any natural n
zn = z · . . . · z

and using the formula for complex multiplication in polar form derived above, I have

zn =
(
r(cos θ + i sin θ)

)n
= rn(cosnθ + i sinnθ).

If r = 1 then I obtain De Moivre’s theorem

(cos θ + i sin θ)n = cosnθ + i sinnθ.

If I define z0 = 1 and z−n = 1
zn then De Moivre’s theorem becomes true for any integer n ∈ Z. I will

use this formula to solve the equation
zn = 1,

in other words I want to determine all possible n-th roots of unity n
√
1.

Since |1| = 1 and Arg 1 = 2πk for k ∈ Z, I have, assuming that z = r(cos θ + i sin θ),

rn(cosnθ + i sinnθ) = cos 2πk + i sin 2πk,
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which implies that rn = 1 =⇒ r = 1, and

θ =
2πk

n
, k ∈ Z.

How many really different θ did I get? Note that for k = 0, 1, . . . , n−1 all θ will be between 0 and 2π,
but for k = n I get θ = 2π, which corresponds to the same polar angle as θ = 0. Therefore I obtained

Proposition 2.2. Equation zn = 1 has always n distinct roots

ẑk =
n
√
1 = cos

2πk

n
+ i sin

2πk

n
, k = 0, 1, . . . , n− 1,

which are called the n-th roots of unity.

In exactly the same way I can solve the equation

zn = w

for a given complex w = ρ(cosφ+ i sinφ).
Fill in the missed details to convince yourself that in this case

zk = n
√
w = n

√
ρ

(
cos

φ+ 2πk

n
+ i sin

φ+ 2πk

n

)
, k = 0, . . . , n− 1,

where φ is any argument of w. Using the formula for the multiplication of complex numbers it follows
that I can write

zk = n
√
w = n

√
ρ
(
cos

argw

n
+ sin

argw

n

)
ẑk, k = 0, . . . , n− 1.

Problem 2.5. Show that in general the equalities

arg zw = arg z + argw, arg
z

w
= arg z − argw

are incorrect.

Problem 2.6. Show that the sum of all the n-th roots of unity is always zero (n ̸= 1). What geometric
fact does it express?

Problem 2.7. In the first lecture I have derived Cardano’s formula to solve a depressed cubic polyno-
mial. I told you that this formula allows to find one real root of it, and two others can be found from
the corresponding quadratic equation. Actually, using the roots of unity the formula that I derived
can be modified to give all three (in general complex) roots. Can you fill in the necessary details?

2.4 Examples with solutions

Let us see how the material I discussed so far in this lecture can be used to solve concrete examples.
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Example 2.3. What is the polar form of z = −1− i
√
3? I have

|z| =
√

12 + (
√
3)2 = 2, tan θ = tan arg z =

−
√
3

−1
=

√
3 =⇒ arg z = −2π

3
,

hence

−1− i
√
3 = 2

(
cos

(
−2π

3

)
+ i sin

(
−2π

3

))
.

Example 2.4. What is the modulus and argument of

z = − sin
π

8
− i cos

π

8
?

The modulus is easy since

|z| =
√

sin2
π

8
+ cos2

π

8
= 1.

For the argument we have

arg z = −π + arctan
sin π

8

cos π
8

= −π + arctan cot
π

8
= −π + arctan tan

(π
2
− π

8

)
= −5π

8
,

hence

Arg z = −5π

8
+ 2πk, k ∈ Z.

Example 2.5. Compute (−1 + i
√
3)60.

First

−1 + i
√
3 = 2

(
cos

2π

3
+ i sin

2π

3

)
.

Hence by De Moivre’s formula

(−1 + i
√
3)60 = 260

(
cos

2π

3
+ i sin

2π

3

)60

= 260
(
cos 60

2π

3
+ i sin 60

2π

3

)
= 260.

Example 2.6. Find a formula for sin 3θ.
By De Moivre’s formula

(cos θ + i sin θ)3 = cos 3θ + i sin 3θ.

Raising to the third power the left hand side I get

(cos θ + i sin θ)3 = cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ

and recalling that two complex numbers are equal if and only if their real and imaginary parts are
equal simultaneously, I conclude

sin 3θ = 3 cos2 θ sin θ − sin3 θ = 3 sin θ − 4 sin3 θ.

Example 2.7. Compute all 4
√
1− i. I have

1− i =
√
2
(
cos

(
−π

4

)
+ i sin

(
−π

4

))
,

hence by the formula I have I get

4
√
1− i =

8
√
2

(
cos

−π/4 + 2πk

4
+ i sin

−π/4 + 2πk

4

)
, k = 0, 1, 2, 3.
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